If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x+5=180
We move all terms to the left:
x^2+4x+5-(180)=0
We add all the numbers together, and all the variables
x^2+4x-175=0
a = 1; b = 4; c = -175;
Δ = b2-4ac
Δ = 42-4·1·(-175)
Δ = 716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{716}=\sqrt{4*179}=\sqrt{4}*\sqrt{179}=2\sqrt{179}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{179}}{2*1}=\frac{-4-2\sqrt{179}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{179}}{2*1}=\frac{-4+2\sqrt{179}}{2} $
| 16u=-192 | | n/5=33+(-17) | | x+10x=42 | | -5x+15=2x-23 | | 12x-6-4x+8=3 | | -3x–8=-5 | | 9-j=2j | | x-1/10=1/10 | | 8/a=30/6 | | x^2+100=19 | | 3m+78=81 | | 0.4382+0.645xx=3.1 | | d-2938=1371 | | -3+5(x+4)=57 | | 7y=2(5)-3 | | -8x-4+5x-6=50 | | O.6x-3.2=0.4-0.3 | | 5y=2(4)-3 | | 3+-2x=-17 | | 2x=336 | | 5y+14=3y+16 | | 100(x-1)=8x-2 | | 1.7=5.3-0.9x | | 4x+30=11x+30 | | 3y=2(3)-3 | | 12x−15=25x− | | 5-7x+x=-2x-1 | | 9n+24=3n | | 2x+3=x-14 | | 6x+146=180 | | 5(g+8)=-7=103 | | ½(12x-8)=2x+8 |